Demonstration Program SoundAndSpeech Listing

/7
//
//
//
//

3k 3k 3k 3k ok ok 3k 3k ok 3k 3k ok ok 3k 3k ok 3k 3k ok ok 3k 3k ok 3k 3k %k ok 3k 3k ok 5k 3k %k >k 3k 3k 3k 5k 3k %k >k 3k 3k 3k 5k 3k %k >k 3k 3k %k 5k 3k %k >k 3k 3k 3k 5k 3k 5k >k 3k 3k ok 5k 3k %k >k 3k 3k ok >k 3k %k %k 3k 3k %k >k 3k %k %k 5k 3k % %k 3k %k *k k

SoundAndSpeech.c CLASSIC EVENT MODEL

3k 3k 3k 3k ok ok 3k 3k ok 3k 3k ok ok 3k 3k ok 3k 3k ok ok 3k 3k ok 3k 3k 5k ok 3k 3k 3k 5k 3k %k >k 3k 3k ok 3k 3k %k >k 3k 3k 3k 5k 3k %k >k 3k 3k %k 5k 3k 3k >k 3k 3k %k 5k 3k 5k >k 3k 3k ok 5k 3k %k >k 3k 3k %k 5k 3k %k %k 3k 3k %k >k 3k %k %k 3k 3k % %k 3k %k *k k

This program opens a modeless dialog containing five bevel button controls arranged in

// two groups, namely, a synchronous sound group and an asynchronous sound group. Clicking on
// the bevel buttons causes sound to be played back or recorded as follows:

//

// ® Synchronous group:

//

// e Play sound resource.

//

// e Record sound resource (Mac 0S 8/9 only).

//

// e Speak text string.

//

// ® Asynchronous group:

//

// e Play sound resource.

//

// e Speak text string.

//

// The asynchronous sound sections of the program utilise a special library called

// AsyncSoundLibPPC, which must be included in the CodeWarrior project.

//

// The program utilises the following resources:

//

// o A 'plst' resource.

//

// o A 'DLOG' resource and associated 'DITL', 'dlgx', and 'dftb' resources (all purgeable).
//

// o 'CNTL' resources (purgeable) for the controls within the dialog.

//

// e Two 'snd ' resources, one for synchronous playback (purgeable) and one for asynchronous
// playback (purgeable).

//

// ® Four 'cicn' resources (purgeable). Two are used to provide an animated display which
// halts during synchronous playback and continues during asynchronous playback. The

// remaining two are used by the bevel button controls.

//

// o Two 'STR#' resources containing "speak text" strings and error message strings (all

// purgeable).

//

// @ ‘'hrct' and 'hwin' resources (purgeable) for balloon help.

//

// o A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,

// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.

//

// Each time it is invoked, the function doRecordResource creates a new 'snd' resource with a
// unique ID in the resource fork of a file titled "SoundResources".

//

// 3%k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k %k 5k >k 3k 5k 3k 3k 3k 3k >k 3k 5k >k %k 5k >k 3k 5k >k 3k 3k 3k >k %k 5k >k %k 5k >k 3k 3k >k 3k 3k 3k >k %k 5%k >k %k 5k >k 3k 5k 3%k 3k 3k 3%k >k %k 5%k >k 3k 5%k >k 3k 3%k 3%k >k %k 3%k >k %k 5%k %k 3k 5%k %k >k %k 5% %k %k 5%k %k %k >k k k
// includes
#include <Carbon.h>

#include <string.h>

// defines
#define rDialog 128

#define 1iDone 1

#define 1iPlayResourceSync 4

#define 1iRecordResource 5

#define 1iSpeakTextSync 6

#define 1iPlayResourceASync 7

Basic Sound and Speech Version 1.0 Beta

24-1

#define 1iSpeakTextAsync 8
#define rPlaySoundResourceSync 8192
#define rPlaySoundResourceASync 8193

#define rSpeechStrings 128
#define rErrorStrings 129
#define eOpenDialogFail 1
#define eCannotInitialise 2
#define eGetResource 3
#define eMemory 4
#define eMakeFSSpec 5
#define eWriteResource 6
#define eNoChannelsAvailable 7
#define ePlaySound 8
#define eSndPlay 9
#define eSndRecord 10
#define eSpeakString 11
#define rColourIconl 128
#define rColourIcon2 129
#define kMaxChannels 8
#define kOutOfChannels 1
// global variables
Boolean gRunningOnX = false;
Boolean gDone;

DialogRef gDialogRef};

472 A PP AsyncSoundLib attention flag

Boolean gCallAS_CloseChannel = false;

// function prototypes
void main (void);
void doPreliminaries (void);

OSErr quitAppEventHandler (AppleEvent * AppleEvent *,SInt32);
void doInitialiseSoundLib (void);

void eventLoop (void);
void doDialogHit (SIntle);
void doPlayResourceSync (void);
void doRecordResource (void);

void doSpeakStringSync (void);
void doPlayResourceASync (void);
void doSpeakStringAsync (void);

void doSetUpDialog (void);

void doErrorAlert (SIntle);

void helpTags (DialogRef);

// AsyncSoundLib function prototypes

OSErr AS_Initialise (Boolean *,SIntl6);

OSErr AS_GetChannel (SInt32,SndChannelPtr *);
OSErr AS_PlayID (SIntle, SInt32 *);

OSErr AS_PlayHandle (Handle,SInt32 *);

void AS_CloseChannel (void);

void AS_CloseDown (void);

/7 FF KKk ok skok ok ok ok ok sk ok sk ok sk ok sk ok ok ook sk ok sk ok skok sk ok ok sk ok ko ko sk sk ok ok sk ok sk ok skok ko kokokokokok ok sk ok kR sk k ok k ko k kR kR kR kR kkk aq

void main(void)

{

SInt32 response;

// do preliminaries

doPreliminaries();

// disable Quit item in Mac 0S X Application menu

24-2 Version 1.0 Beta Basic Sound and Speech

}

DisableMenuCommand(NULL, 'quit');

// open and set up dialog
if(!(gDialogRef = GetNewDialog(rDialog,NULL,(WindowRef) -1)))
{
doErrorAlert(eOpenDialogFail);
ExitToShell(Q);
3

SetPortDialogPort(gDialogRef);
SetDialogDefaultItem(gDialogRef,kStdOkItemIndex);

Gestalt(gestaltMenuMgrAttr,&response);
if(response & gestaltMenuMgrAqualayoutMask)

{
helpTags(gDialogRef);
gRunningOnX = true;

}
doSetUpDialog(Q);

ShowWindow(GetDialogWindow(gDialogRef));
// initialise AsyncSoundlLib

doInitialiseSoundLib();

// enter event loop

eventLoop();

/7 FFFRE KKk ok ko ok ok ok ok sk ok sk ok skok ko ok ok ok sk ok sk ok ko skokokok ok sk kok ok sk ok skokokokokok ok kb kR kok ok k ko kokk kR kkkkkkx k% JoPpreliminaries

void doPreliminaries(void)

{

}

OSErr osError;

MoreMasterPointers(64);
InitCursor();
FlushEvents(everyEvent,0);

osError = AEInstallEventHandler(kCoreEvent(Class,kAEQuitApplication,
NewAEEventHandlerUPP((AEEventHandlerProcPtr) quitAppEventHandler),
oL,false);
ifCosError != noErr)
ExitToShell();

/7 FF KKKk ok skok ok ok sk ok ok ok sk ok sk ok ok s ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok ok ok ok ok sk ok sk ok sk ok sk ok ok s ok sk ok sk ok skok ok ok ok sk ok sk ok ok ok ok ok ok dOQuitAppEvent

OSErr quitAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)

{

OSErr osError;
DescType returnedType;
Size actualSize;

osError = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,NULL,Q,
&actualSize);

if(osError == errAEDescNotFound)

{
gDone = true;
osError = nokErr;

}
else if(osError == nokrr)
osError = errAEParamMissed;

return osError;

Basic Sound and Speech Version 1.0 Beta

24-3

}

/7 FFFRE KKk kok ok ok ok ok sk ok sk ok skok sk ok ok ok sk ok sk ok ko ko okokokok ok ok ok skok kb kok ok k ok kb kR kR ok k ok ok kk kR kkk* JoTn1t1igliseSoundLib

void dolInitialiseSoundLib(void)

}

if(AS_Initialise(&gCallAS_CloseChannel,kMaxChannels) != noErr)
{

doErrorAlert(eCannotInitialise);

ExitToShell();
}

/7 KF KKKk ok skok ok ok ok sk ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok skok sk ok ok ok sk ok sk ok sk ok sk ok ok ok ok ok eVentLOOp

void eventLoop(void)

{

Rect theRect, eraseRect;
CIconHandle colourIconHdll;
CIconHandle colourIconHdl2;

SIntle fontNum, itemHit;
UInt32 finalTicks;
Boolean gotEvent;

EventRecord eventStructure;
DialogRef theDialogRef;
WindowRef windowRef;
SIntle partCode;

SetRect(&theRect,262,169,294,201);
SetRect(&eraseRect,310,170,481,200);
colourIconHdll = GetCIcon(rColourIconl);
colourIconHdl2 = GetCIcon(rColourIcon2);

gbhone = false;
while(!gDone)

if(gCallAS_CloseChannel)

{
AS_CloseChannel();

GetFNum("\pGeneva" ,&fontNum);
TextFont(fontNum);
TextSize(10);
MoveTo(341,189);
DrawString("\pAS_CloseChannel called");
QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
Delay(45,&finalTicks);
}

gotEvent = WaitNextEvent(everyEvent,&eventStructure,10,NULL);
if(gotEvent)

if(IsDialogEvent(&eventStructure))
{
if(DialogSelect(&eventStructure,&theDialogRef,&itemHit))
doDialogHit(itemHit);
}
else
{
if(eventStructure.what == mouseDown)
{
partCode = FindWindow(eventStructure.where,&windowRef);
if(partCode == inDrag)
DragWindow(windowRef ,eventStructure.where,NULL);
if(partCode == inMenuBar)
MenuSelect(eventStructure.where);

24-4 Version 1.0 Beta

Basic Sound and Speech

3

3

else

{
PlotCIcon(&theRect,colourIconHdll);
QDFlushPortBuffer(GetDialogPort(gDialogRef),NULL);
Delay(5,&finalTicks);
PlotCIcon(&theRect,colourIconHdl2);
Delay(5,&finalTicks);
EraseRect(&eraseRect);

3

3

DisposeDialog(gDialogRef);

AS_CloseDown();
}

/7 KFFRE KKk ok skok ok ok ok sk ok sk ok sk ok sk ok ok s ok sk ok sk ok sk ok ok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok skeok ok ok ok sk ok sk ok sk ok skok ok ok sk ok sk ok sk ok ko ok ok ok ok doDialOgHit

void doDialogHit(SInt16 item)
{
switch(item)
{
case iDone:
gDone = true;
break;

case iPlayResourceSync:
doPlayResourceSync();
break;

case iRecordResource:
doRecordResource();
break;

case iSpeakTextSync:
doSpeakStringSync(Q);
break;

case iPlayResourceASync:
doPlayResourceASync();
break;

case iSpeakTextAsync:
doSpeakStringAsync();
break;
}
}

/7 KF KKk ok skok ok ok ok sk ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok skok sk ok ok sk ok sk ok sk ok ko sk ok ok ok ok ok doplayResoupceSync

void doPlayResourceSync(void)

{
SndListHandle sndListHdl;
SIntl6 reskErr;
OSErr osErr;

ControlRef controlRef;

sndListHdl = (SndListHandle) GetResource('snd ',rPlaySoundResourceSync);
reskErr = ResError();
if(resErr != noErr)

doErrorAlert(eGetResource);

if(sndListHdl !'= NULL)
HLock((Handle) sndListHdl);

osErr = SndPlay(NULL,sndListHdl,false);
ifCosErr != noErr)

Basic Sound and Speech Version 1.0 Beta

doErrorAlert(eSndPlay);
HUnlock((Handle) sndListHdl);
ReleaseResource((Handle) sndlListHdl);

GetDialogItemAsControl(gDialogRef,iPlayResourceSync,&controlRef);
SetControlValue(controlRef,0);
}
}

/7 FFFRE Rk ok ko ok ok ok ok sk ok sk ok skok sk ok ok ok sk ok sk ok ko ko okokok sk ok sk ok skok kb kokokok ok k ok kR kok ok k ok ok k kR kR kR kkkkx k JoRecordResource

void doRecordResource(void)

{
SIntl6 oldResFileRefNum, theResourcelD, resErr, tempResFileRefNum;
BitMap screenBits;
Point toplLeft;
OSErr memErr, osErr;
Handle soundHd1;
FSSpec fileSpecTemp;

ControlRef controlRef;

oldResFileRefNum = CurResFile();
GetQDGlobalsScreenBits(&screenBits);

topLeft.h = (screenBits.bounds.right / 2) - 156;
topLeft.v = 150;

soundHdl = NewHandle(25000);
memErr = MemError();

if(memErr != noErr)
{
doErrorAlert(eMemory);
return;
3
osErr = FSMakeFSSpec(0,0, "\pSoundResources" ,&fileSpecTemp);
ifCosErr == noErr)
{

tempResFileRefNum = FSpOpenResFile(&fileSpecTemp,fsWrPerm);
UseResFile(tempResFileRefNum);

3

else
doErrorAlert(eMakeFSSpec);

if(oskErr == nokrr)
{
osErr = SndRecord(NULL,topLeft,siBetterQuality,&(SndListHandle) soundHdl);
if(oskErr != noErr &% oskErr != userCanceledErr)
doErrorAlert(eSndRecord);
else if(osErr != userCanceledErr)
{
do
{
theResourceID = UniqueID('snd ');
} while(theResourceID <= 8191 && theResourcelD >= 0);

AddResource(soundHdl, 'snd ',theResourcelD,"\pTest");
reskErr = ResError();
if(resErr == noErr)
UpdateResFile(tempResFileRefNum);
reskErr = ResError();
if(resErr != noErr)
doErrorAlert(eWriteResource);

}

CloseResFile(tempResFileRefNum);
}

DisposeHandle(soundHdl);

24-6 Version 1.0 Beta Basic Sound and Speech

UseResFile(oldResFileRefNum);
GetDialogItemAsControl(gDialogRef,iRecordResource,&controlRef);

SetControlValue(controlRef,0);
b

/7 KF KKKk ok skok ok ok ok sk ok sk ok sk ok sk ok ok o ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok skok sk ok ok sk ok sk ok sk ok ko sk ok ok ok ok sk ok ok ok dOSpeakStringSync

void doSpeakStringSync(void)

{
SIntl6 activeChannels;
Str255 theString;
OSErr reskErr, oskErr;

ControlRef controlRef;
activeChannels = SpeechBusy();

GetIndString(theString,rSpeechStrings,1);
reskErr = ResError();
if(resErr != noErr)
{
doErrorAlert(eGetResource);
return;

}

osErr = SpeakString(theString);
ifCosErr != noErr)
doErrorAlert(eSpeakString);

while(SpeechBusy() != activeChannels)

’

GetDialogItemAsControl(gDialogRef,iSpeakTextSync,&controlRef);
SetControlValue(controlRef,0);
3

/7 KF KKKk ok skok ok ok ok s ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok skeok ok ok ok ok sk ok sk ok skok sk ok ok ok sk ok sk ok sk ok ok ok ok doplayResourceASync

void doPlayResourceASync(void)

{
SIntl6 error;

error = AS_PlayID(rPlaySoundResourceASync,NULL);
if(Cerror == kOutOfChannels)
doErrorAlert(eNoChannelsAvailable);
else
ifCerror != noErr)
doErrorAlert(ePlaySound);
}

/7 KF KKk ok skok ok ok ok sk ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok skok sk ok ok sk ok sk ok sk ok ko sk ok ok ok ok ok dOSpeakStPingAsynC

void doSpeakStringAsync(void)
{

Str255 theString;

OSErr resErr, osErr;

GetIndString(theString,rSpeechStrings,2);
reskErr = ResError();
if(resErr != noErr)
{
doErrorAlert(eGetResource);
return;

}

osErr = SpeakString(theString);
ifCosErr != noErr)
doErrorAlert(eSpeakString);

Basic Sound and Speech Version 1.0 Beta

/7 KE KKKk ok skok ok ok ok s ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok skeok sk ok ok sk ok sk ok sk ok ko ok ok ok ok ok sk ok ok ok doSetUpDialog

void doSetUpDialog(void)

{
SIntl6 a;
Point offset;
ControlRef controlRef;

ControlButtonGraphicAlignment alignConstant = kControlBevelButtonAlignLeft;
ControlButtonTextPlacement placeConstant = kControlBevelButtonPlaceToRightOfGraphic;

offset.v
offset.h

1;
5;

for(a=iPlayResourceSync;a<iSpeakTextAsync+1;a++)
{
GetDialogItemAsControl(gDialogRef,a,&controlRef);
SetControlData(controlRef,kControlEntireControl,kControlBevelButtonGraphicAlignTag,
sizeof(alignConstant),&alignConstant);
SetControlData(controlRef,kControlEntireControl,kControlBevelButtonGraphicOffsetTag,
sizeof(offset),&offset);
SetControlData(controlRef,kControlEntireControl,kControlBevelButtonTextPlaceTag,
sizeof(placeConstant),&placeConstant);

3
if(gRunningOnX)

GetDialogItemAsControl(gDialogRef,iRecordResource,&controlRef);
DeactivateControl(controlRef);
}
}

/7 FFFRE KKk ko ok ok ok sk ok sk ok ko sk ok ok ok sk ok sk ok ko ko okok ok sk ok ok ok sk ok skokokokokok ok kb sk ok kok ok k ok k ko k kR kR kR kkxkxk k k% doEprrorAlert

void doErrorAlert(SIntl6 errorStringIndex)
{

Str255 errorString;
SInt16 itemHit;
GetIndString(errorString,rErrorStrings,errorStringIndex);

StandardAlert(kAlertCautionAlert,errorString,NULL,NULL ,&itemHit);
3

/7 FF KKKk ok skok ok ok ok s ok sk ok sk ok sk ok ok ok ok sk ok s ok sk ok sk ok sk ok ok ok ok s ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok sk ok ok s ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok helpTags

void helpTags(DialogRef dialogRef)

{
HMHelpContentRec helpContent;
SIntle a;
ControlRef controlRef;

memset(&helpContent,d,sizeof(helpContent));
HMSetTagDelay(500);
HMSetHelpTagsDisplayed(true);

helpContent.version = kMacHelpVersion;

helpContent.tagSide = kHMOutsideTopCenterAligned;
helpContent.content[kHMMinimumContentIndex].contentType = kHMStringResContent;
helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmResID = 130;

for(a = 1;a <= 5; a++)

{
if(a == 2)

continue;

helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = a;
GetDialogItemAsControl(dialogRef,a + 3,&controlRef);
HMSetControlHelpContent(controlRef,&helpContent);

b

b

24-8 Version 1.0 Beta Basic Sound and Speech

/7 KF KKKk ok skok ok ok ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok sk ok ok s ok sk ok sk ok sk ok sk ok ok ok s ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok ok ok ok

Basic Sound and Speech Version 1.0 Beta

24-9

Demonstration Program SoundAndSpeech Comments

On Mac 0S 9, ensure that the Speech Manager extension is on before running this program.

When this program is run, the user should click on the various buttons in the dialog box to play back and
record sound resources and to play back the provided "speak text" strings. The user should observe the
effects of asynchronous and synchronous playback on the "working man" icon in the image well in the
dialog. The user should also observe that the text "AS_CloseChannel called" appears briefly in the
secondary group box to the right of the image well when AsynchSoundLib sets the application's "attention"
flag to true, thus causing the application to call the AsynchSoundLib function AS_CloseChannel.

Note that the doRecordResource function saves recorded sounds as 'snd ' resources with unique IDs in the
resource fork of the file titled "SoundResources".

defines

kMaxChannels will be used to specify the maximum number of sound channels that AsynchSoundlLib is to open.
kOutOfChannels will be used to determine whether the AsynchSoundlLib function AS_PlayID returns a "no
channels available" error.

main
doInitialiseSoundLib is called to initialise the AsynchSoundLib library.
dolnitialiseSoundLib

doInitialiseSoundLib initialises the AsynchSoundLib library. More specifically, it calls the
AsynchSoundLib function AS_Initialise and passes to AsynchSoundLib the address of the application's
"attention" flag (gAS_CloseChannel), together with the requested number of channels.

If AS_Initialise returns a non-zero value, an error alert is displayed and the program terminates.
eventLoop

Within the event loop, the "attention" flag (gCallAS_CloseChannel) required by AsynchSoundlLib is checked.
If AsynchSoundLib has set it to true, the AsynchSoundLib function AS_CloseChannel is called to free up the
relevant ASStructure, close the relevant sound channel, and clear the "attention" flag. In addition, some
text is drawn in the group box to the right of the image well to indicate to the user that AS_CloseChannel
has just been called.

If WaitNextEvent returns other than zero, IsDialogEvent is called to determine whether the event belongs
to the dialog. If so, DialogSelect is called to determine whether one of the dialog's buttons was
clicked. If so, the function doDialogHit is called to further process the item hit. If the event does
not belong to the dialog, the else block supports dragging of the dialog and choosing Show/Hide Balloons
from the Help menu.

If zero was returned by WaitNextEvent, the two frames of "working man" animation are drawn within the
image well, separated by five ticks, and the area in which "AS_CloseChannel called" may have been drawn is
erased.

When gDone is set to true, the event loop exits, the dialog is disposed of, and the AsynchSoundLib
function AS_CloseDown is called to stop all current playback, close open sound channels, and dispose of
the associated ASStructures.

doPlayResourceSync

doPlayResourceSync is the first of the synchronous playback functions. It uses SndPlay to play a
specified 'snd ' resource.

GetResource attempts to load the resource. If the subsequent call to ResError indicates an error, an
error alert is presented.

If the load was successful, the sound handle is locked prior to a call to SndPlay. Since NULL is passed
in the first parameter of the SndPlay call, SndPlay automatically allocates a sound channel to play the
sound and deallocates the channel when the playback is complete. false passed in the third parameter
specifies that the playback is to be synchronous.

Note: The 39940-byte 'snd ' resource being used contains one command only (bufferCmd). The
compressed sound header indicates MACE 3:1 compression. The sound length is 119568 frames. The 8-
bit mono sound was sampled at 22kHz.

24-10 Version 1.0 Beta Basic Sound and Speech

SndPlay causes all commands and data contained in the sound handle to be sent to the channel. Since there
is a bufferCmd command in the 'snd ' resource, the sound is played.

If SndPlay returns an error, an error dlert is presented.

When SndPlay returns, HUnlock unlocks the sound handle and ReleaseResource releases the resource.
doRecordResource

doRecordResource uses SndRecord to record a sound synchronously and then saves the sound in a 'snd '
resource. The 'snd ' resource will be saved to the resource fork of the file "SoundResources".

The first line saves the file reference number of the current resource file. The next three lines
establish the location for the top left corner of the sound recording dialog.

NewHandle creates a relocatable block. The address of the handle will be passed as the fourth parameter
of the SndRecord call. The size of this block determines the recording time available. (If NULL is
passed as the fourth parameter of a SndRecord call, the Sound Manager allocates the largest block possible
in the application's heap.) If NewHandle cannot allocate the block, an error alert is presented and the
function returns.

The next block opens the resource fork of the file "SoundResources" and makes it the current resource
file.

SndRecord opens the sound recording dialog and handles all user interaction until the user clicks the
Cancel or Save button. Note that the second parameter of the SndRecord call establishes the location for
the top left corner of the sound recording dialog and that the third parameter specifies 22kHz, mono, 3:1
compression.

When the user clicks the Save button, the handle is resized automatically. If the user clicks the Cancel
button, SndRecord returns userCanceledErr. If SndRecord returns an error other than userCanceledErr, an
error alert is presented and the function returns after closing the resource fork of the file, disposing
of the relocatable block, and restoring the saved resource file reference number.

The relocatable block allocated by NewHandle, and resized as appropriate by SndPlay, has the structure of
a 'snd ' resource, but its handle is not a handle to an existing resource. To save the recorded sound as
a "snd ' resource in the resource fork of the current resource file, the do/while loop first finds an
acceptable unique resource ID for the resource. (For the System file, resource IDs for 'snd ' resources
in the range @ to 8191 are reserved for use by Apple Computer, Inc. Avoiding those IDs in this
demonstration is not strictly necessary, since there is no intention to move those resources to the System
file.)

The call to AddResource causes the Resource Manager to regard the relocatable block containing the sound
as a 'snd ' resource. If the call is successful, UpdateResFile writes the changed resource map and the
'snd ' resource to disk. If an error occurs, an error dlert is presented.

The relocatable block is then disposed of, the resource fork of the file "SoundResources" is closed, and
the saved resource file reference number is restored.

doSpeakStringSync
doSpeakStringSync uses SpeakString to speak a specified string resource and takes measures to cause the

speech to be generated in a psuedo-synchronous manner.

The speech that SpeakString generates is asynchronous, that is, control returns to the application before
SpeakString finishes speaking the string. 1In this function, SpeechBusy is used to cause the speech
activity to be synchronous so far as the function as a whole is concerned. That is, doSpeakStringSync
will not return until the speech activity is complete.

As a first step, the first line saves the number of speech channels that are active immediately before the
call to SpeakString.

GetIndString loads the first string from the specified 'STR#' resource. If an error occurs, an error
alert is presented and the function returns.

SpeakString, which automatically allocates a speech channel, is called to speak the string. If
SpeakString returns an error, an error alert is presented.

Although SpeakString returns control to the application immediately it starts generating the speech, the
speech channel it opens remains open until the speech concludes. While the speech continues, the number

Basic Sound and Speech Version 1.0 Beta 24-11

of speech channels open will be one more that the number saved at the first line. Accordingly, the while
loop continues until the number of open speech channels is equal to the number saved at the first line.
Then, and only then, does doSpeakStringSync exit.

doPlayResourceASync

doPlayResourceASync uses the AsynchSoundLib function AS_PlayID to play a 'snd ' resource asynchronously.

Note: The 24194-byte 'snd ' resource being used contains one command only (bufferCmd). The
compressed sound header indicates no compression. The sound length is 24195 frames. The 8-bit mono
sound was sampled at 5kHz.

AS_PlayID is called to play the 'snd ' resource specified in the first parameter. Since no further
control over the playback is required, NULL is passed in the second parameter. (Recall that, if you pass
a pointer to a variable in the second parameter, AS_PlayID returns a reference number in that parameter.
That reference number may be used to gain more control over the playback process. If you simply want to
trigger a sound and let it to run to completion, you pass NULL in the second parameter, in which case a
reference number is not returned by AS_PlayID.)

If AS_PlayID returns the "no channels currently available" error, an error alert is presented advising of
that specific condition. If any other error is returned, a more generalised error message is presented.

When the sound has finished playing, ASynchSoundLib advises the application by setting the application's
"attention" flag to true. Recall that this will cause the AsynchSoundLib function AS_CloseChannel to be
called to free up the relevant ASStructure, close the relevant sound channel, clear the "attention" flag,
and draw some text in the group box to the right of the image well to indicate to the user that
AS_CloseChannel has just been called.

doSpeakStringAsync

doSpeakStringAsync is identical to the function doSpeakStringSync except that, in this function,
SpeechBusy is not used to delay the function returning until the speech activity spawned by SpeakString
has run its course.

doSetUpDialog

Within doSetUpDialog, the Record Sound Resource bevel button is disabled if the program is running on 0S
X.

Version 1.0 Beta Basic Sound and Speech

	Demonstration Program SoundAndSpeech Listing
	Demonstration Program SoundAndSpeech Comments

